Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 102, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653983

RESUMEN

Patients with refractory immune thrombocytopenia (ITP) frequently encounter substantial bleeding risks and demonstrate limited responsiveness to existing therapies. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) present a promising alternative, capitalizing on their low immunogenicity and potent immunomodulatory effects for treating diverse autoimmune disorders. This prospective phase I trial enrolled eighteen eligible patients to explore the safety and efficacy of UC-MSCs in treating refractory ITP. The research design included administering UC-MSCs at escalating doses of 0.5 × 106 cells/kg, 1.0 × 106 cells/kg, and 2.0 × 106 cells/kg weekly for four consecutive weeks across three cohorts during the dose-escalation phase, followed by a dose of 2.0 × 106 cells/kg weekly for the dose-expansion phase. Adverse events, platelet counts, and changes in peripheral blood immunity were monitored and recorded throughout the administration and follow-up period. Ultimately, 12 (with an addition of three patients in the 2.0 × 106 cells/kg group due to dose-limiting toxicity) and six patients were enrolled in the dose-escalation and dose-expansion phase, respectively. Thirteen patients (13/18, 72.2%) experienced one or more treatment emergent adverse events. Serious adverse events occurred in four patients (4/18, 22.2%), including gastrointestinal hemorrhage (2/4), profuse menstruation (1/4), and acute myocardial infarction (1/4). The response rates were 41.7% in the dose-escalation phase (5/12, two received 1.0 × 106 cells/kg per week, and three received 2.0 × 106 cells/kg per week) and 50.0% (3/6) in the dose-expansion phase. The overall response rate was 44.4% (8/18) among all enrolled patients. To sum up, UC-MSCs are effective and well tolerated in treating refractory ITP (ClinicalTrials.gov ID: NCT04014166).


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Púrpura Trombocitopénica Idiopática , Humanos , Femenino , Masculino , Púrpura Trombocitopénica Idiopática/terapia , Púrpura Trombocitopénica Idiopática/inmunología , Persona de Mediana Edad , Adulto , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/inmunología , Cordón Umbilical/citología , Estudios Prospectivos , Anciano
2.
Cell Commun Signal ; 22(1): 6, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166927

RESUMEN

Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.


Asunto(s)
Exosomas , Ferroptosis , Lesión Pulmonar , Humanos , Muerte Celular , NAD
3.
Elife ; 122023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695201

RESUMEN

Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant ß-galactosidase (ß-GALH363A). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of ß-GALH363A. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.


Animals are made up of cells of different types, with each type of cell specializing on a specific role. But for the body to work properly, the different types of cells must be able to coordinate with each other to respond to internal and external stimuli. This can be achieved through signaling molecules, that is, molecules released by a cell that can elicit a specific response in other cells. There are many types of different molecules, including hormones and signaling proteins. Gases can also be potent signaling molecules, participating in various biological processes. Nitric oxide (NO) is a gas signaling molecule that can freely diffuse through the membranes of cells and has roles in blood vessel constriction and other disease processes, making it a promising therapeutic agent. Unfortunately, using artificial carriers to deliver nitric oxide to the organs and tissues where it is needed can lead to issues, including immune reactions to the carrier and long-term toxicity. One way to avoid these effects is by using cells to deliver nitric oxide to the right place. Huang, Qian, Liu et al. have used mesenchymal stem cells ­ which usually develop to form connective tissues such as bone and muscle ­ to develop a cell-based NO-delivery system. The researchers genetically modified the mesenchymal stem cells to produce a compound called ß-GALH363A. On its own ß-GALH363A does not do much, but in its presence, a non-toxic, non-reactive compound developed by Huang, Qian, Liu et al., called MGP, can drive the release of NO from cells. To confirm the usefulness of their cells as a delivery system, Huang, Qian, Liu et al. transplanted some of the genetically modified mesenchymal stem cells into the kidneys of mice, and then showed that when these mice were given MGP, the levels of NO increased in the kidneys but not in other organs. This result confirms that the cell-based delivery system provides spatial and temporal control of the production of NO. These findings demonstrate a new delivery system for therapies using gas molecules, which can be controlled spatiotemporally in mice. In the future, these types of systems could be used in the clinic for long-term treatment of conditions where artificial carriers could lead to complications.


Asunto(s)
Lesión Renal Aguda , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Óxido Nítrico , Células Madre , Ingeniería Genética , Lesión Renal Aguda/terapia
4.
Nat Commun ; 14(1): 4373, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474525

RESUMEN

Mesenchymal stem cells (MSCs) possess potent immunomodulatory activity and have been extensively investigated for their therapeutic potential in treating inflammatory disorders. However, the mechanisms underlying the immunosuppressive function of MSCs are not fully understood, hindering the development of standardized MSC-based therapies for clinical use. In this study, we profile the single-cell transcriptomes of MSCs isolated from adipose tissue (AD), bone marrow (BM), placental chorionic membrane (PM), and umbilical cord (UC). Our results demonstrate that MSCs undergo a progressive aging process and that the cellular senescence state influences their immunosuppressive activity by downregulating PD-L1 expression. Through integrated analysis of single-cell transcriptomic and proteomic data, we identify GATA2 as a regulator of MSC senescence and PD-L1 expression. Overall, our findings highlight the roles of cell aging and PD-L1 expression in modulating the immunosuppressive efficacy of MSCs and implicating perinatal MSC therapy for clinical applications in inflammatory disorders.


Asunto(s)
Antígeno B7-H1 , Células Madre Mesenquimatosas , Humanos , Femenino , Embarazo , Regulación hacia Abajo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Multiómica , Proteómica , Placenta/metabolismo , Senescencia Celular/genética , Células Madre Mesenquimatosas/metabolismo
5.
Water Res ; 242: 120259, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390660

RESUMEN

Heavy metal contamination of waste activated sludge (WAS) is a key factor limiting the land application of sludge for nutrients recovery. This study proposes a novel free nitrous acid (FNA)-assisted asymmetrical alternating current electrochemistry (FNA-AACE) process to achieve high-efficiency decontamination of multi-heavy metals (Cd, Pb, and Fe) in WAS. The optimal operating conditions, the heavy metal removal performance of FNA-AACE, and the related mechanisms for maintaining the high performance were systematically investigated. During the FNA-AACE process, FNA treatment was optimal with an exposure time of 13 h at a pH of 2.9 and an FNA concentration of 0.6 mg/g TSS. Then the sludge was washed with EDTA in a recirculating leaching system under asymmetrical alternating current electrochemistry (AACE). The 6-h working and the following electrode cleaning were defined as a working circle of AACE. After three cycles of working-cleaning periods in AACE treatment, the cumulative removal efficiency of the toxic metals Cd and Pb reached over 97% and 93%, respectively, whilst that of Fe was greater than 65%. This surpasses most previously reported efficiencies and possesses a shorter treatment duration and sustainable EDTA circulation. The mechanism analysis suggested that FNA pretreatment provoked the migration of heavy metals for leaching enhancement, as well as reduced the demand for EDTA eluent concentration and increased conductivity, which can improve the AACE efficiency. Meanwhile, the AACE process absorbed the anionic chelates of heavy metals and reduced them to zero-valent particles on the electrode, regenerating the EDTA eluent and maintaining its high extraction efficiency for heavy metals. In addition, FNA-AACE could provide different electric field operation modes, allowing it to have flexibility for the real application processes. This proposed process is expected to be coupled with anaerobic digestion in wastewater treatment plants (WWTPs) for high efficiency of heavy metal decontamination, sludge reduction, and resource/energy recovery.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Ácido Nitroso , Ácido Edético , Cadmio , Descontaminación , Electroquímica , Plomo , Metales Pesados/análisis
6.
Stem Cell Res Ther ; 14(1): 48, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949464

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS: This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS: Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION: PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Embarazo , Femenino , Ratones , Humanos , Animales , Lipopolisacáridos/toxicidad , Dinoprostona/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Placenta/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo , Citocinas/metabolismo , Inmunomodulación , Macrófagos/metabolismo , Inmunidad , Pulmón/patología
7.
Adv Sci (Weinh) ; 10(3): e2204626, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416304

RESUMEN

Endothelial cell injury plays a critical part in ischemic acute kidney injury (AKI) and participates in the progression of AKI. Targeting renal endothelial cell therapy may ameliorate vascular injury and further improve the prognosis of ischemic AKI. Here, P-selectin as a biomarker of ischemic AKI in endothelial cells is identified and P-selectin binding peptide (PBP)-engineered extracellular vesicles (PBP-EVs) with imaging and therapeutic functions are developed. The results show that PBP-EVs exhibit a selective targeting tendency to injured kidneys, while providing spatiotemporal information for the early diagnosis of AKI by quantifying the expression of P-selectin in the kidneys by molecular imaging. Meanwhile, PBP-EVs reveal superior nephroprotective functions in the promotion of renal repair and inhibition of fibrosis by alleviating inflammatory infiltration, improving reparative angiogenesis, and ameliorating maladaptive repair of the renal parenchyma. In conclusion, PBP-EVs, as an ischemic AKI theranostic system that is designed in this study, provide a spatiotemporal diagnosis in the early stages of AKI to help guide personalized therapy and exhibit superior nephroprotective effects, offering proof-of-concept data to design EV-based theranostic strategies to promote renal recovery and further improve long-term outcomes following AKI.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Humanos , Células Endoteliales/metabolismo , Selectina-P/metabolismo , Riñón/metabolismo , Isquemia/terapia , Lesión Renal Aguda/metabolismo , Vesículas Extracelulares/metabolismo
8.
Int Immunopharmacol ; 113(Pt A): 109408, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36461584

RESUMEN

BACKGROUND AND PURPOSE: Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) are advanced therapy medicinal products (ATMPs) and thus act as an alternative to liver transplantation for acute-on-chronic liver failure (ACLF). Therewith, we are aiming to evaluate the pharmacologyandpharmacokinetics of GMP-grade UC-MSCs products on carbon tetrachloride (CCl4)-induced ACLF mouse model and the concomitant therapeutic dose for intravenous administration. METHODS: For the purpose, the GMP-grade UC-MSCs products were transplanted intravenously into the aforementioned CCl4-induced ACLF NOD-SCID mouse model, and the therapeutic effect was evaluated with the aid of serological, biochemical and histological assessments. Meanwhile, the correlationshipbetween the treatment groups and other characteristics were determined by conducting principal component analysis (PCA). To further verify the spatio-temporal pharmacokinetics of UC-MSCs products on ACLF treatment, we took advantage of the bioluminescence imaging (BLI) technology with the dual-color fluorescence reporter construct (pLV-Fluc-eGFP). RESULTS: The biological characteristics of UC-MSCs products were in conformity with the International Society of Cell Therapy (ISCT) criteriaand the GMP requirements. ACLF mice with high dose of UC-MSCs treatment revealed significantly alleviated pathological manifestations with a dramatically improved survival rate, the alleviation of liver injury with reduced hepatic enzyme, inflammatory infiltration and inflammatory cytokines. Notably, UC-MSCs in ACLF mice displayed preferable homing and delayed attenuation in the damaged liver tissue. CONCLUSION: Collectively, our data indicated the feasibility of UC-MSC-based cytotherapy for ACLF model administration. Our findings have provided new references for pharmacologyandpharmacokinetics assessments, which will provide overwhelming evidence for pre-clinical study in vivo.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Ratones , Animales , Ratones SCID , Ratones Endogámicos NOD , Preparaciones Farmacéuticas , Cordón Umbilical , Modelos Animales de Enfermedad
9.
J Photochem Photobiol B ; 234: 112541, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36029758

RESUMEN

Acute lung injury (ALI) impaired the function of blood oxygen exchange function, resulting in tissue hypoxia and patient death. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) are thought to mitigate the effects of ALI, which boosts researchers' interest in employing stem cell-based therapies to manage ALI. However, as a novel therapy, hUCMSCs still face various limitations such as migrating weakly and insufficient proliferation in vivo. Photobiomodulation (PBM) effciently promotes cell proliferation, migration and homing, which presents a promising strategy for overcoming above limitations. In this study, PBM was emerged to intervene hUCMSCs through detecting cell proliferation, oxidative stress-related factors and inflammatory factors. These results assuredly confirmed that PBM enhanced the antioxidant capacity of cells and improved cell survival in vitro experiments. In vivo, PBM-intervened hUCMSCs intuitively reduce thickness of alveolar septum, excessive secretion of inflammatory factors, relieves bleeding, edema and fibrosis. As a physical intervention, PBM further strengthens the therapeutic effect of hUCMSCs and depicted a hopeful therapy in ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Lesión Pulmonar Aguda/terapia , Animales , Proliferación Celular , Supervivencia Celular , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas , Cordón Umbilical
10.
Stem Cell Res Ther ; 13(1): 253, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715868

RESUMEN

BACKGROUND: Intravenous administration of mesenchymal stromal cells (MSCs) has an acknowledged competence of cardiac repair, despite a lack of systematic description of the underlying biological mechanisms. The lung, but not the heart, is the main trapped site for intravenously transplanted MSCs, which leaves a spatial gap between intravenously transplanted MSCs and the injured myocardium. How lung-trapped MSCs after intravenous transplantation rejuvenate the injured myocardium remains unknown. METHODS: MSCs were isolated from human placenta tissue, and DF-MSCs or Gluc-MSCs were generated by transduced with firefly luciferase (Fluc)/enhanced green fluorescence protein (eGFP) or Gaussia luciferase (Gluc) lactadherin fusion protein. The therapeutic efficiency of intravenously transplanted MSCs was investigated in a murine model of doxorubicin (Dox)-induced cardiotoxicity. Trans-organ communication from the lung to the heart with the delivery of blood was investigated by testing the release of MSC-derived extracellular vesicles (MSC-EVs), and the potential miRNA inner MSC-EVs were screened out and verified. The potential therapeutic miRNA inner MSC-EVs were then upregulated or downregulated to assess the further therapeutic efficiency RESULTS: Dox-induced cardiotoxicity, characterized by cardiac atrophy, left ventricular dysfunction, and injured myocardium, was alleviated by consecutive doses of MSCs. These cardioprotective effects might be attributed to suppressing GRP78 triggering endoplasmic reticulum (ER) stress-induced apoptosis in cardiomyocytes. Our results confirmed that miR-181a-5p from MSCs-derived EVs (MSC-EVs) inhibited GRP78. Intravenous DF-MSCs were trapped in lung vasculature, secreted a certain number of EVs into serum, which could be confirmed by the detection of eGFP+ EVs. GLuc activity was increased in serum EVs from mice administrated with GLuc-MSCs. MiR-181a-5p, inhibiting GRP78 with high efficacy, was highly expressed in serum EVs and myocardium after injecting consecutive doses of MSCs into mice treated with Dox. Finally, upregulation or downregulation of miR-181a-5p levels in MSC-EVs enhanced or weakened therapeutic effects on Dox-induced cardiotoxicity through modulating ER stress-induced apoptosis. CONCLUSIONS: This study identifies intravenously transplanted MSCs, as an endocrine reservoir, to secrete cardioprotective EVs into blood continuously and gradually to confer the trans-organ communication that relieves Dox-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Cardiotoxicidad/terapia , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo
11.
Sci Total Environ ; 833: 155272, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427618

RESUMEN

As a by-product of wastewater treatment, waste activated sludge (WAS) has complex composition, strong hydrophilic extracellular polymeric substance (EPS), which make it difficult to dewater. In this study, an electro-peroxone oxidation-Fe(III) coagulation (E-peroxone-Fe(III)) sequential conditioning approach was developed to improve WAS dewaterability. At E-peroxone oxidation stage, hydrogen peroxide was generated through 2-electron path on a carbon polytetrafluoroethylene cathode, and reacted with the sparged O3 to produce hydroxyl radicals. At the subsequent coagulation stage, Fe(III) was dosed to coagulate the small WAS fragments and release water from WAS. Along E-peroxone-Fe(III) subsequent conditioning process, the physicochemical properties of WAS, main components, functional groups and evolution of protein secondary structure, and typical amino acids in EPS, as well as the type and semi-quantitative of elements in WAS, were investigated. The results indicated that under the optimal conditions, the reductions of specific resistance to filterability (SRF) and capillary suction time (CST) for WAS equalled 78.18% and 71.06%, respectively, and its bound water content decreased from 8.87 g/g TSS to 7.67 g/g TSS. After E-peroxone oxidation, part of protein and polysaccharide migrated outside from TB-EPS to slime, the ratio of α-helix/(ß-sheet + random coil) declined, even some of organic-N disintegrated to inorganic-N. At Fe(III) coagulation stage, re-coagulation of the dispersed WAS fragments and easy extraction from inner EPS for protein and polysaccharide occurred. Furthermore, the protein secondary structure of ß-sheet increased by 13.48%, the contents of hydrophobic and hydrophilic amino acids also increased. In addition, a strong negative correlation between the hydrophobic amino acid content of Met in slime and CST or SRF (R2CST = -0.999, p < 0.05 or R2SRF = -0.948, p < 0.05) occurred, while a strong positive correlation between the hydrophilic amino acid content of Cys in TB-EPS and CST or SRF (R2CST = 0.992, p < 0.05 or R2SRF = 0.921, p < 0.05) occurred, which could be related to the WAS dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aminoácidos , Compuestos Férricos , Oxidación-Reducción , Polisacáridos , Proteínas , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Agua/química
12.
J Nanobiotechnology ; 20(1): 95, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209908

RESUMEN

BACKGROUND: The promising therapeutic strategy for the treatment of peripheral artery disease (PAD) is to restore blood supply and promote regeneration of skeletal muscle regeneration. Increasing evidence revealed that prostaglandin E2 (PGE2), a lipid signaling molecule, has significant therapeutic potential for tissue repair and regeneration. Though PGE2 has been well reported in tissue regeneration, the application of PGE2 is hampered by its short half-life in vivo and the lack of a viable system for sustained release of PGE2. RESULTS: In this study, we designed and synthesized a new PGE2 release matrix by chemically bonding PGE2 to collagen. Our results revealed that the PGE2 matrix effectively extends the half-life of PGE2 in vitro and in vivo. Moreover, the PGE2 matrix markedly improved neovascularization by increasing angiogenesis, as confirmed by bioluminescence imaging (BLI). Furthermore, the PGE2 matrix exhibits superior therapeutic efficacy in the hindlimb ischemia model through the activation of MyoD1-mediated muscle stem cells, which is consistent with accelerated structural recovery of skeletal muscle, as evidenced by histological analysis. CONCLUSIONS: Our findings highlight the chemical bonding strategy of chemical bonding PGE2 to collagen for sustained release and may facilitate the development of PGE2-based therapies to significantly improve tissue regeneration.


Asunto(s)
Dinoprostona , Neovascularización Fisiológica , Animales , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/tratamiento farmacológico , Isquemia/patología , Músculo Esquelético
13.
Int J Ophthalmol ; 14(11): 1784-1790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804871

RESUMEN

AIM: To evaluate therapeutic outcomes of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) treatment in patients with refractory uveitis. METHODS: A retrospective and noncomparative review was performed on four patients with refractory uveitis from December 2013 to December 2017. HUC-MSCs were administered intravenously at a dose of 1×106 cells/kg. Clinical response, relapse rate, change of visual acuity, and other metrics were evaluated. RESULTS: All four patients presented with responses to HUC-MSCs treatment, with three males and one female. The numbers of uveitis attacks per year after the HUC-MSCs treatment (0, 2, 0, 0 respectively) all decreased compared with the numbers before the treatment (3, 6, 4, 4 respectively). The oral steroid and immunosuppressive agents were tapered in all patients without recrudescence of ocular inflammation, and three patients discontinued their oral medicine at the last visit. The best corrected visual acuity (BCVA) of 3 patients was improved to varying degrees, and the BCVA of 1 patient remained at 20/20 (Snellen chart) from the first to the last consultation. CONCLUSION: The study provides an effective therapy of HUC-MSCs in maintaining remission in patients affected by uveitis refractory to previous immunosuppressant treatments.

14.
iScience ; 24(11): 103243, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34746706

RESUMEN

Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy.

15.
Stem Cells Transl Med ; 10 Suppl 2: S18-S30, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34724720

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have broad application prospects for regenerative medicine due to their self-renewal, high plasticity, ability for differentiation, and immune response and modulation. Interest in turning MSCs into clinical applications has never been higher than at present. Many biotech companies have invested great effort from development of clinical grade MSC product to investigational new drug (IND) enabling studies. Therefore, the growing demand for publication of MSC regulation in China necessitates various discussions in accessible professional journals. The National Medical Products Administration has implemented regulations on the clinical application of MSCs therapy. The regulations for MSCs products as drug have been updated in recent years in China. This review will look over the whole procedure in allogeneic MSC development, including regulations, guidance, processes, quality management, pre-IND meeting, and IND application for obtaining an approval to start clinical trials in China. The review focused on process and regulatory challenges in the development of MSCs products, with the goal of providing strategies to meet regulatory demands. This article describes a path for scientists, biotech companies, and clinical trial investigators toward the successful development of MSC-based therapeutic product.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , China , Aplicación de Nuevas Drogas en Investigación , Medicina Regenerativa
16.
Water Res ; 201: 117352, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157572

RESUMEN

In this study, the siderite/PMS conditioning-pressurized vertical electro-osmotic dewatering (PEOD) process was used to reduce the volume of activated sludge (AS). The changes in water content, cell, extracellular polymeric substances (EPS) distribution, protein secondary structures and typical amino acids in EPS fractions of AS along siderite/PMS conditioning-PEOD process were investigated. Results showed that the final water content (WC) of dewatered AS was 58.02% under the RSM optimized conditioning conditions of 0.05 g/g TSS siderite dosage, 0.23 g/g TSS PMS dosage, 600 kPa mechanical pressure and 20 V voltage. At conditioning and PEOD stages, the bound water content(BWC) of AS decreased by 25.23% and 91.76%, respectively. The HO• and SO4-· generated from siderite activating PMS could lead to the disruption of cells. The ratio of Ala-to Lys (Ala/Lys) showed strong negative correlations with BWC or WC in slime (RBWC2=-0.803, p<0.01; RWC2=-0.771, p<0.01) and TB-EPS (RBWC2=-0.693, p<0.01; RWC2=-0.705, p<0.01), and could be considered as an indicator of AS dewaterability. Compared with raw AS, conditioning led to the occurrence of the denser protein structure in TB-EPS and the looser one in slime. The contact number between Ala-and water decreased in TB-EPS and increased in slime, which indicated that the migration of water adhered in TB-EPS to outer layer. At the DG, MC and EC process, while the looser protein structure in TB-EPS and the denser one in slime occurred, as well as higher contact number between Ala-and water in TB-EPS than that in slime, which indicated that more water flowed outsider of slime than TB-EPS. This implied that the variations of the compactness of protein secondary structures and the contact number between Ala-and water in EPS layers correlated with AS dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aminoácidos , Carbonatos , Compuestos Férricos , Eliminación de Residuos Líquidos , Agua
17.
Stem Cell Res Ther ; 12(1): 196, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743829

RESUMEN

BACKGROUND: The senescence of dermal fibroblasts (DFLs) leads to an imbalance in the synthesis and degradation of extracellular matrix (ECM) proteins, presenting so-called senescence-associated secretory phenotype (SASP), which ultimately leads to skin aging. Recently, mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been recognized as a promising cell-free therapy for degenerative diseases, which opens a new avenue for skin aging treatment. METHODS: In this study, we utilized chitosan (CS) hydrogel for effective loading and sustained release of EVs. In vitro, we explored the rejuvenation effects of CS hydrogel-incorporated EVs (CS-EVs) on replicative senescence DFLs through a series of experiments such as senescence-associated ß-galactosidase (SA-ß-gal) staining, RT-PCR, and Western blot analysis. Besides, we employed local multi-site subcutaneous injection to treat skin aging of naturally aged mice with CS-EVs and DiI fluorescent dye was used to label EVs to achieve in vivo real-time tracking. RESULTS: CS-EVs can significantly improve the biological functions of senescent fibroblasts, including promoting their proliferation, enhancing the synthesis of ECM proteins, and inhibiting the overexpression of matrix metalloproteinases (MMPs). Moreover, CS hydrogel could prolong the release of EVs and significantly increase the retention of EVs in vivo. After CS-EVs subcutaneous injection treatment, the aging skin tissues showed a rejuvenation state, manifested explicitly as the enhanced expression of collagen, the decreased expression of SASP-related factors, and the restoration of tissue structures. CONCLUSIONS: CS hydrogel-encapsulated EVs could delay the skin aging processes by ameliorating the function of aging DFLs. Our results also highlight the potential of CS hydrogel-encapsulated EVs as a novel therapeutic strategy for improving aging skin to rejuvenation.


Asunto(s)
Quitosano , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Senescencia Celular , Fibroblastos , Hidrogeles , Ratones , Rejuvenecimiento
18.
BMC Pediatr ; 21(1): 102, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639900

RESUMEN

BACKGROUND: Defects of bone marrow mesenchymal stem cells (BM-MSCs) in proliferation and differentiation are involved in the pathophysiology of aplastic anemia (AA). Infusion of umbilical cord mesenchymal stem cells (UC-MSCs) may improve the efficacy of immunosuppressive therapy (IST) in childhood severe aplastic anemia (SAA). METHODS: We conducted an investigator-initiated, open-label, and prospective phase IV trial to evaluate the safety and efficacy of combination of allogenic UC-MSCs and standard IST for pediatric patients with newly diagnosed SAA. In mesenchymal stem cells (MSC) group, UC-MSCs were injected intravenously at a dose of 1 × 106/kg per week starting on the 14th day after administration of rabbit antithymocyte globulin (ATG), for a total of 3 weeks. The clinical outcomes and adverse events of patients with UC-MSCs infusion were assessed when compared with a concurrent control group in which patients received standard IST alone. RESULTS: Nine patients with a median age of 4 years were enrolled as the group with MSC, while the data of another 9 childhood SAA were analysed as the controls. Four (44%) patients in MSC group developed anaphylactic reactions which were associated with rabbit ATG. When compared with the controls, neither the improvement of blood cell counts, nor the change of T-lymphocytes after IST reached statistical significance in MSC group (both p > 0.05) and there were one (11%) patient in MSC group and two (22%) patients in the controls achieved partial response (PR) at 90 days after IST. After a median follow-up of 48 months, there was no clone evolution occurring in both groups. The 4-year estimated overall survival (OS) rate in two groups were both 88.9% ± 10.5%, while the 4-year estimated failure-free survival (FFS) rate in MSC group was lower than that in the controls (38.1% ± 17.2% vs. 66.7% ± 15.7%, p = 0.153). CONCLUSIONS: Concomitant use of IST and UC-MSCs in SAA children is safe but may not necessarily improve the early response rate and long-term outcomes. This clinical trial was registered at ClinicalTrials.gov, identifier: NCT02218437 (registered October 2013).


Asunto(s)
Anemia Aplásica , Células Madre Mesenquimatosas , Anemia Aplásica/terapia , Niño , Ciclosporina , Humanos , Estudios Prospectivos , Resultado del Tratamiento , Cordón Umbilical
19.
Acta Biomater ; 122: 199-210, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33453408

RESUMEN

Perinatal-related tissues, such as the placenta, umbilical cord, and amniotic membrane, are generally discarded after delivery and are increasingly attracting attention as alternative sources for decellularized extracellular matrix (dECM) isolation. Recent studies indicate that glycosaminoglycans (GAGs) in the dECM play key roles during tissue regeneration. However, the dECM is organ specific, and the glycosaminoglycanomics of dECMs from perinatal tissues and the regulatory function of GAGs have been poorly investigated. In this study, we explored the glycosaminoglycanomics of dECMs from the placenta, umbilical cord and amniotic membrane. We hypothesized that the therapeutic effects of dECMs are related to the detailed composition of GAGs. Hydrogels of dECM derived from perinatal tissues were generated, and glycosaminoglycanomics analysis was employed to identify the cues that promote tissue repair and regeneration in a murine cutaneous wound-healing model. We utilized highly sensitive liquid chromatography-tandem mass spectrometry for glycosaminoglycanomics analysis. Our results revealed that placenta-derived dECM (PL-dECM) hydrogel has higher contents of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, molecular imaging showed that the PL-dECM hydrogel exerted the best anti-inflammatory and proangiogenic effects in the skin wound healing model. Further in vitro analyses demonstrated that CS with 6-O-sulfo group (CS-6S) has an anti-inflammatory effect, while HS with 6-O-sulfo group (HS-6S) plays a crucial role in angiogenesis. In conclusion, this study highlights the critical roles of GAGs in perinatal tissue-derived dECMs by promoting angiogenesis and inhibiting inflammation and indicates that it is feasible to utilize 6-sulfated GAG-enriched placental dECM hydrogel as an attractive candidate for tissue engineering and drug delivery.


Asunto(s)
Matriz Extracelular , Glicosaminoglicanos , Animales , Femenino , Ratones , Placenta , Embarazo , Cicatrización de Heridas
20.
Exp Clin Endocrinol Diabetes ; 129(7): 542-548, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31412379

RESUMEN

AIM: Diabetic foot has become the main cause of non-traumatic amputation. Stem cell therapy, especially mesenchymal stem cells (MSCs), holds a great promise as a therapy for diabetic foot with ischemia limb arterial disease. The aim of this pilot study is to evaluate the safety and efficacy of placenta-derived MSCs (P-MSCs) treatment for diabetic patients with critical limb ischemia (CLI). METHODS: Four eligible diabetic patients with CLI were consecutively enrolled in this pilot study. On the base of the standard-of-care treatment, these patients accepted P-MSCs treatment by intramuscular injection for successive 3 times at an interval of 4 weeks, and the safety and efficacy of placenta-derived MSCs (P-MSCs) treatment were evaluated. RESULTS: There were no serious adverse events during the period of P-MSCs injection and the 24-weeks follow-up period. The clinical ischemic features of patients were improved 24 weeks after P-MSCs treatment. The scores of resting pain and limb coldness significantly decreased, and pain-free walking distance significantly increased from baseline to 24 weeks after P-MSCs therapy. The resting ankle brachial index increased, but no statistically significant difference was found. The findings of magnetic resonance angiography showed the increase of collateral vessel formation in one patient, but there were no significant changes observed in the other patients. CONCLUSIONS: The data in this pilot study indicated that multiple intramuscular P-MSCs injections may be a safe and effective alternative therapy for diabetic patients with CLI, and larger, placebo-controlled, perspective studies are needed to prove these results.


Asunto(s)
Isquemia Crónica que Amenaza las Extremidades/terapia , Angiopatías Diabéticas/terapia , Trasplante de Células Madre Mesenquimatosas , Placenta , Anciano , Pie Diabético/terapia , Femenino , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Proyectos Piloto , Embarazo , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...